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Probability and Statistics

❖ Probability P(A) of an event A : a real number between 0 to 1.

❖ Joint probability P(A ∩ B) : probability that  both A and B occurs in a 

single experiment. 

P(A ∩ B) = P(A)P(B) if A and B and independent.

❖ Probability P(A ∪ B) of union of A and B: either A or B occurs in a single 

experiment.

P(A ∪ B) = P(A) + P(B) if A and B are mutually exclusive.

❖ Conditional probability: 

❖ Therefore, the Bayes rule:

❖ Total probability: let then
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❖ Probability density function (pdf): p(x) for a continuous random 
variable x

Total and conditional probabilities can also be extended to pdf’s.

❖ Mean and Variance: let p(x) be the pdf of a random variable x

❖ Statistical independence:

❖ Kullback-Leibler divergence (Distance?) of pdf’s

Pay attention that 
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❖ Characteristic function of a pdf:

❖ 2nd Characteristic function:

❖ n-th order moment: 

❖ Cumulants:
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Discrete Distributions

❖ Binomial distribution B(n,p): 

Repeatedly grab n balls, each with a probability p of getting a black 
ball. The probability of getting k black balls:

❖ Poisson distribution 

probability of # of events occurring in a fixed period of time if these 
events occur with a known average. 
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Normal (Gaussian) Distribution

❖ Univariate N(μ, σ2):

❖ Multivariate N(μ, Σ):

❖ Central limit theorem:

6

)
2

)(
exp(

2

1
)(

2

2







−
−=

x
xp

)])([(

and ])[( where

matrix covariance  theand mean  with the

)()(
2

1
exp

||2

1
)(

22

2

21

2

2

221

112

2

1

1

jjiijiij

iii

lll

l

l

T

xxE

xE

xxxp
















−−==

−=





















=









−−−


= −









s.' of spdf'  theof veirrespecti

 when )1,0(~ then ,Let 
1

i

n

i i

x

nN
z

xz →
−

= = 



http://upload.wikimedia.org/wikipedia/commons/7/74/Normal_Distribution_PDF.svg
http://upload.wikimedia.org/wikipedia/commons/c/ca/Normal_Distribution_CDF.svg
http://upload.wikimedia.org/wikipedia/commons/8/8c/Standard_deviation_diagram.svg


Other Continuous Distributions

❖ Chi-square (Χ2) distribution of k degrees of freedom:

distribution of a sum of squares of k independent standard normal 
random variables, that is,

❖ Mean: k, Variance: 2k

❖ Assume

➢ Then by central limit theorem.

➢ Also is approximately normally distributed with mean 
and unit variance.
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Other Continuous Distributions

❖ t-distribution: estimating mean of a normal distribution when sample 
size is small.

A t-distributed variable 

Mean: 0 for k > 1, 

variance: k/(k-2) for k > 2

❖ β-distribution: Beta(α,β): the posterior distribution of p of a binomial 
distribution after α−1 events with p and β − 1 with 1 − p.
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Linear Algebra

❖ Eigenvalues and eigenvectors: 

there exists λ and v such that Av= λv

❖ Real matrix A is called positive semidefinite if xTAx ≥ 0 for every
nonzero vector x; 

A is called positive definite if xTAx > 0.

❖ Positive definite matrixes act as positive numbers. 

All positive eigenvalues 

❖ If A is symmetric, AT=A, 

then its eigenvectors are orthogonal, vi
Tvj=0.

❖ Therefore, a symmetric A can be diagonalized as

9

),,(diag and ],,[ where

 and 

2121 ll

TT

vvv

AA

  ==

==



Correlation Matrix and Inner Product Matrix

Principal component analysis (PCA)

❖ Let x be a random variable in Rl, its correlation matrix Σ=E[xxT] is 
positive semidefinite and thus can be diagonalized as

❖ Assign , then 

❖ Further assign , then

Classical multidimensional scaling (classical MDS)

❖ Given a distance matrix D={dij}, the inner product matrix G={xi
Txj} can 

be computed by a bidirectional centering process

❖ G can be diagnolized as 

❖ Actually, nΛ and Λ’ share the same set of eigenvalues, and
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Cost Function Optimization

❖ Find θ so that a differentiable function J(θ) is minimized.

❖ Gradient descent method

➢ Starts with an initial estimate θ(0)

➢ Adjust θ iteratively by

➢ Taylor expansion of J(θ) at a stationary point θ0

Ignore higher order terms within a neighborhood of θ0
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❖ Newton’s method

➢ Adjust θ iteratively by

➢ Converges much faster that gradient descent. 

In fact, from the Taylor expansion, we have

➢ The minimum is found in one iteration.

❖ Conjugate gradient method

12

old

J
old 




 =

−




−= |

)(1
H

001

new

0

))((

)(
)(








=−−=

−=




−

oldold

J

HH

H

11

1

11

1

)(
or   and

 |
)(

 where

 

−−

−

−−

=

−

−
==




=

−=

t

T

t

tt

T

t
t

t

T

t

t

T

t
t

t

tttt

gg

ggg

gg

gg

J
g

g

t











http://upload.wikimedia.org/wikipedia/commons/d/da/Newton_optimization_vs_grad_descent.svg
http://upload.wikimedia.org/wikipedia/commons/b/bf/Conjugate_gradient_illustration.svg


Constrained Optimization with 
Equality Constraints

Minimize J(θ) 

subject to fi(θ)=0 for i=1, 2, …, m 

❖ Minimization happens at 

❖ Lagrange multipliers: construct
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Constrained Optimization with 
Inequality Constraints

Minimize J(θ) subject to fi(θ)≥0 for i=1, 2, …, m 

❖ fi(θ)≥0 i=1, 2, …, m defines a feasible region in which the answer lies.

❖ Karush–Kuhn–Tucker (KKT) conditions:

A set of necessary conditions, which a local optimizer θ* has to satisfy. 

There exists a vector λ of Lagrange multipliers such that
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(1) Most natural condition.

(2) fi(θ*) is inactive if λi =0.

(3) λi ≥0 if the minimum is on fi(θ*). 

(4) The (unconstrained) minimum in the interior region if all λi =0.

(5) For convex J(θ) and the region, local minimum is global minimum.

(6) Still difficult to compute. Assume some fi(θ*)’s active, check λi ≥0.



❖ Convex function:

❖ Concave function: 

❖ Convex set:

Local minimum of a convex function is also global minimum.
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❖ Min-Max duality
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❖ Lagrange duality

➢ Recall the optimization problem:

➢ Convex Programming 
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Mercer’s Theorem and the Kernel Method

❖ Mercer’s theorem: 

The kernel method can transform any algorithm that solely depends on 
the dot product between two vectors to a kernelized vesion, by 
replacing dot product with the kernel function. The kernelized version 
is equivalent to the algorithm operating in the range space of φ. 
Because kernels are used, however, φ is never explicitly computed.
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