Pattern Recognition

Review of Prerequisites in Math and Statistics

Prepared by
Li Yang

Based on
Appendix chapters of Pattern Recognition, $4^{\text {th }}$ Ed.
by S. Theodoridis and K. Koutroumbas and figures from
Wikipedia.org

Probability and Statistics

* Probability $\mathrm{P}(A)$ of an event A : a real number between 0 to 1 .
* Joint probability $P(A \cap B)$: probability that both A and B occurs in a single experiment.
$P(A \cap B)=P(A) P(B)$ if A and B and independent.
* Probability $P(A \cup B)$ of union of A and B : either A or B occurs in a single experiment.
$P(A \cup B)=P(A)+P(B)$ if A and B are mutually exclusive.
* Conditional probability:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

* Therefore, the Bayes rule:

$$
P(A \mid B) P(B)=P(B \mid A) P(A) \text { and } P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

* Total probability: let A_{1}, \ldots, A_{m} such that $\sum_{i=1}^{\mathrm{m}} P\left(A_{i}\right)=1$ then

$$
P(B)=\sum_{i=1}^{m} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

* Probability density function (pdf): $p(x)$ for a continuous random variable x

$$
P(a \leq x \leq b)=\int_{a}^{b} p(x) d x
$$

Total and conditional probabilities can also be extended to pdf's.

* Mean and Variance: let $p(x)$ be the pdf of a random variable x

$$
E[x]=\int_{-\infty}^{+\infty} x p(x) d x, \text { and } \sigma^{2}=\int_{-\infty}^{+\infty}(x-E[x])^{2} p(x) d x
$$

* Statistical independence:

$$
p(x, y)=p_{x}(x) p_{y}(y)
$$

* Kullback-Leibler divergence (Distance?) of pdf's

$$
L\left(p(\mathbf{x}), p^{\prime}(\mathbf{x})\right)=-\int p(\mathbf{x}) \ln \frac{p^{\prime}(\mathbf{x})}{p(\mathbf{x})} d \mathbf{x}
$$

Pay attention that $L\left(p(\mathbf{x}), p^{\prime}(\mathbf{x})\right) \neq L\left(p^{\prime}(\mathbf{x}), p(\mathbf{x})\right)$

* Characteristic function of a pdf:

$$
\begin{gathered}
\Phi(\boldsymbol{\Omega})=\int_{-\infty}^{+\infty} p(\mathbf{x}) \exp \left(j \mathbf{\Omega}^{T} \mathbf{x}\right) d \mathbf{x}=E\left[\exp \left(j \mathbf{\Omega}^{T} \mathbf{x}\right)\right] \\
\Phi(s)=\int_{-\infty}^{+\infty} p(x) \exp (s x) d x=E[\exp (s x)]
\end{gathered}
$$

* $2^{\text {nd }}$ Characteristic function: $\Psi(s)=\ln \Phi(s)$
* n-th order moment: $\frac{d^{n} \Phi(0)}{d s^{n}}=E\left[x^{n}\right]$
* Cumulants: $\kappa_{n}=\frac{d^{n} \Psi(0)}{d s^{n}}$

When $E[x]=0$, then

$$
\begin{aligned}
& \kappa_{0}=0, \kappa_{1}=E[x]=0, \\
& \kappa_{2}=E\left[x^{2}\right]=\sigma^{2}, \kappa_{3}=E\left[x^{3}\right] \text { (Skewness) } \\
& \kappa_{4}=E\left[x^{4}\right]-3 \sigma^{4} \text { (Kurtosis) }
\end{aligned}
$$

Discrete Distributions

* Binomial distribution $B(n, p)$:

Repeatedly grab n balls, each with a probability p of getting a black ball. The probability of getting k black balls:

$$
P(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

* Poisson distribution
probability of \# of events occurring in a fixed period of time if these events occur with a known average.

$$
P(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

When $n \rightarrow \infty$ and $n p$ remains constant,

$$
B(n, p) \rightarrow \text { Poisson }(n p)
$$

Normal (Gaussian) Distribution

* Univariate $\mathbf{N}\left(\mu, \sigma^{2}\right)$:

$$
p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

* Multivariate $N(\mu, \Sigma)$:
$p(x)=\frac{1}{\sqrt{2 \pi|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)$
with the mean μ and the covariance matrix

$$
\Sigma=\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 l} \\
\sigma_{21} & \sigma_{2}^{2} & \cdots & \sigma_{2 l} \\
\vdots & \vdots & \vdots & \vdots \\
\sigma_{l 1} & \sigma_{l 2} & \cdots & \sigma_{l}^{2}
\end{array}\right]
$$

where $\sigma_{i}^{2}=E\left[\left(x_{i}-\mu_{i}\right)^{2}\right]$ and

$$
\sigma_{i j}=\sigma_{j i}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]
$$

* Central limit theorem:

Let $z=\sum_{i=1}^{n} x_{i}$, then $\frac{z-\mu}{\sigma} \sim N(0,1)$ when $n \rightarrow \infty$
 irrespective of the pdf's of x_{i} 's.

Other Continuous Distributions

* Chi-square (X^{2}) distribution of k degrees of freedom: distribution of a sum of squares of k independent standard normal random variables, that is, $\chi^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2}$ where $x_{i} \approx N(0,1)$ $p(y)=\frac{1}{2^{k / 2} \Gamma(k / 2)} y^{k / 2-1} e^{-y / 2} \operatorname{step}(y)$,
where $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$
* Mean: k, Variance: 2k

* Assume $x \sim \chi^{2}(k)$
$>$ Then $(x-k) / \sqrt{2 k} \sim N(0,1)$ as $k \rightarrow \infty$ by central limit theorem.
> Also $\sqrt{2 x}$ is approximately normally distributed with mean $\sqrt{2 k-1}$ and unit variance.

Other Continuous Distributions

* t-distribution: estimating mean of a normal distribution when sample size is small.
A t-distributed variable $q=x / \sqrt{z / k}$ where $x \approx N(0,1)$ and $z \approx \chi^{2}(k)$

$$
p(q)=\frac{\Gamma((k+1) / 2)}{\sqrt{\pi k} \Gamma(k / 2)}\left(1+\frac{q^{2}}{k}\right)^{-(k+1) / 2}
$$

Mean: 0 for $k>1$,
variance: $k /(k-2)$ for $k>2$

* $\boldsymbol{\beta}$-distribution: Beta (α, β) : the posterior distribution of p of a binomial distribution after $\alpha-1$ events with p and $\beta-1$ with $1-p$.

$$
\begin{aligned}
p(x) & =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \\
& =\frac{1}{\mathrm{~B}(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}
\end{aligned}
$$

Linear Algebra

* Eigenvalues and eigenvectors:
there exists λ and v such that $A v=\lambda v$
$\%$ Real matrix A is called positive semidefinite if $x^{\top} A x \geq 0$ for every nonzero vector x ;
A is called positive definite if $\mathrm{x}^{\top} A x>0$.
* Positive definite matrixes act as positive numbers.

All positive eigenvalues

* If A is symmetric, $A^{\top}=A$,
then its eigenvectors are orthogonal, $\mathrm{v}_{\mathrm{i}}^{\top} \mathrm{v}_{\mathrm{j}}=0$.
* Therefore, a symmetric A can be diagonalized as

$$
\begin{aligned}
& A=\Phi \Lambda \Phi^{T} \text { and } \Phi^{T} A \Phi=\Lambda \\
& \text { where } \Phi=\left[v_{1}, v_{2}, \ldots v_{l}\right] \text { and } \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{l}\right)
\end{aligned}
$$

Correlation Matrix and Inner Product Matrix

Principal component analysis (PCA)

* Let x be a random variable in R^{\prime}, its correlation matrix $\Sigma=\mathrm{E}\left[x x^{\top}\right]$ is positive semidefinite and thus can be diagonalized as

$$
\Sigma=\Phi \Lambda \Phi^{T}
$$

* Assign $x^{\prime}=\Phi^{T} x$, then $\Sigma^{\prime}=E\left(x^{\prime} x^{\prime T}\right)=\Phi^{T} \Sigma \Phi=\Lambda$
* Further assign $x^{\prime \prime}=\Lambda^{-1 / 2} \Phi^{T} x$, then $\Sigma^{\prime \prime}=E\left(x^{\prime \prime} x^{\prime \prime T}\right)=I$

Classical multidimensional scaling (classical MDS)

* Given a distance matrix $\mathrm{D}=\left\{\mathrm{d}_{\mathrm{ij}}\right\}$, the inner product matrix $\mathrm{G}=\left\{\mathrm{X}_{\mathrm{i}}{ }^{\top} \mathrm{X}_{\mathrm{j}}\right\}$ can be computed by a bidirectional centering process

$$
G=-\frac{1}{2}\left(I-\frac{1}{n} e e^{T}\right) D\left(I-\frac{1}{n} e e^{T}\right) \text { where } e=[1,1, \ldots, 1]^{T}
$$

* G can be diagnolized as $G=\Psi \Lambda^{\prime} \Psi^{T}$
* Actually, $\mathrm{n} \wedge$ and Λ^{\prime} share the same set of eigenvalues, and

$$
\Phi=X^{T} \Psi \text { where } X=\left[x_{1}, \ldots, x_{n}\right]^{T}
$$

Because $G=X X^{T}, X$ can then be receovered as $X=\Psi \Lambda^{1 / 2}$

Cost Function Optimization

* Find θ so that a differentiable function $\mathrm{J}(\theta)$ is minimized.
* Gradient descent method
$>$ Starts with an initial estimate $\theta(0)$
$>$ Adjust θ iteratively by

$$
\begin{aligned}
\theta_{\text {new }} & =\theta_{\text {old }}+\Delta \theta \\
\Delta \theta & =-\left.\mu \frac{\partial J(\theta)}{\partial \theta}\right|_{\theta=\theta_{\text {old }}}, \text { where } \mu>0
\end{aligned}
$$

$>$ Taylor expansion of $\mathrm{J}(\theta)$ at a stationary point θ^{0}

$$
\begin{aligned}
& J(\theta)=J\left(\theta^{0}\right)+\left(\theta-\theta^{0}\right)^{T} \mathbf{g}+\frac{1}{2}\left(\theta-\theta^{0}\right)^{T} \mathbf{H}\left(\theta-\theta^{0}\right)+O\left(\left(\theta-\theta^{0}\right)^{3}\right) \\
& \text { where } \mathbf{g}=\left.\frac{\partial J(\theta)}{\partial \theta}\right|_{\theta=\theta^{0}} \text { and } \mathbf{H}(i, j)=\left.\frac{\partial^{2} J(\theta)}{\partial \theta_{i} \partial \theta_{j}}\right|_{\theta=\theta^{0}}
\end{aligned}
$$

Ignore higher order terms within a neighborhood of θ^{0}

$$
\theta_{\text {new }}-\theta^{0}=(I-\mu \mathbf{H})\left(\theta_{\text {old }}-\theta^{0}\right)
$$

\mathbf{H} is positive semidefini te, then $\mathbf{H}=\Phi \Lambda \Phi^{T}$, we get
$\Phi^{T}\left(\theta_{\text {new }}-\theta^{0}\right)=(I-\mu \Lambda) \Phi^{T}\left(\theta_{\text {old }}-\theta^{0}\right)$
which will converge if every $\left|1-\mu \lambda_{i}\right|<1$, i.e., $\mu<2 / \lambda_{\text {max }}$.
Therefore, the convergence speed is decided by $\lambda_{\min } / \lambda_{\max }$.

* Newton's method
> Adjust θ iteratively by

$$
\Delta \theta=-\left.\mathbf{H}_{o l d}^{-1} \frac{\partial J(\theta)}{\partial \theta}\right|_{\theta=\theta_{o l d}}
$$

> Converges much faster that gradient descent. In fact, from the Taylor expansion, we have

$$
\begin{aligned}
& \frac{\partial J(\theta)}{\partial \theta}=\mathbf{H}\left(\theta-\theta^{0}\right) \\
& \theta_{\text {new }}=\theta_{\text {old }}-\mathbf{H}^{-1}\left(\mathbf{H}\left(\theta_{\text {old }}-\theta^{0}\right)\right)=\theta^{0}
\end{aligned}
$$

$>$ The minimum is found in one iteration.

* Conjugate gradient method

$$
\begin{aligned}
\Delta \theta_{t} & =g_{t}-\beta_{t} \Delta \theta_{t-1} \\
\text { where } g_{t} & =\left.\frac{\partial J(\theta)}{\partial \theta}\right|_{\theta=\theta_{t}} \\
\text { and } \beta_{t} & =\frac{g_{t}^{T} g_{t}}{g_{t-1}^{T} g_{t-1}} \text { or } \beta_{t}=\frac{g_{t}^{T}\left(g_{t}-g_{t-1}\right)}{g_{t-1}^{T} g_{t-1}}
\end{aligned}
$$

Constrained Optimization with Equality Constraints

Minimize $J(\theta)$
subject to $f_{i}(\theta)=0$ for $i=1,2, \ldots, m$

* Minimization happens at

$$
\frac{\partial J(\theta)}{\partial \theta}=\lambda \frac{\partial f_{i}(\theta)}{\partial \theta}
$$

* Lagrange multipliers: construct

$$
\begin{aligned}
& L(\theta, \lambda)=J(\theta)-\sum_{i=1}^{m} \lambda_{i} f_{i}(\theta) \\
& \text { and solve } \frac{\partial L(\theta, \lambda)}{\partial \theta}=\frac{\partial L(\theta, \lambda)}{\partial \lambda}=0
\end{aligned}
$$

Constrained Optimization with Inequality Constraints

Minimize $J(\theta)$ subject to $f_{i}(\theta) \geq 0$ for $i=1,2, \ldots, m$

* $f_{i}(\theta) \geq 0 i=1,2, \ldots, m$ defines a feasible region in which the answer lies.
* Karush-Kuhn-Tucker (KKT) conditions:

A set of necessary conditions, which a local optimizer θ_{*} has to satisfy.
There exists a vector λ of Lagrange multipliers such that
(1) $\frac{\partial}{\partial \boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{*}, \lambda\right)=0$
(2) $\lambda_{i} \geq 0$ for $i=1,2, \ldots, m$
(3) $\lambda_{i} f_{i}\left(\boldsymbol{\theta}_{*}\right)=0$ for $i=1,2, \ldots, m$
(1) Most natural condition.
(2) $f_{i}\left(\theta_{*}\right)$ is inactive if $\lambda_{i}=0$.

(3) $\lambda_{i} \geq 0$ if the minimum is on $f_{i}\left(\theta_{*}\right)$.
(4) The (unconstrained) minimum in the interior region if all $\lambda_{i}=0$.
(5) For convex $\mathrm{J}(\theta)$ and the region, local minimum is global minimum.
(6) Still difficult to compute. Assume some $f_{i}\left(\theta_{*}\right)$'s active, check $\lambda_{i} \geq 0$.

* Convex function:
$f(\theta): S \subseteq \mathfrak{R}^{l} \rightarrow \mathfrak{R}$ is convax if $\forall \theta, \theta^{\prime} \in S, \lambda \in[0,1]$
$f\left(\lambda \theta+(1-\lambda) \theta^{\prime}\right) \leq \lambda f(\theta)+(1-\lambda) f\left(\theta^{\prime}\right)$
* Concave function:
$f\left(\lambda \theta+(1-\lambda) \theta^{\prime}\right) \geq \lambda f(\theta)+(1-\lambda) f\left(\theta^{\prime}\right)$
* Convex set:
$S \subseteq \mathfrak{R}^{l}$ is a convax set if $\forall \theta, \theta^{\prime} \in S, \lambda \in[0,1]$
$\left.\lambda \theta+(1-\lambda) \theta^{\prime}\right) \in S$
Local minimum of a convex function is also global minimum.
If $f(\theta)$ is concave, then $X=\{\theta \mid f(\theta) \geq b\}$ is a convex set.

* Min-Max duality

Game : A pays $F(x, y) \$$ to B while A chooses x and B chooses y
A's goal : $\min _{x} \max _{y} F(x, y)$, B's goal : $\max _{y} \min _{x} F(x, y)$

The two problems are dual to each other.
In general : $\min _{x} F(x, y) \leq F(x, y) \leq \max _{y} F(x, y)$
Therefore, $\max \min F(x, y) \leq \min _{x} \max F(x, y)$

Saddle point condition :

If there exists $\left(x_{*}, y_{*}\right)$ such that
$F\left(x_{*}, y\right) \leq F\left(x_{*}, y_{*}\right) \leq F\left(x, y_{*}\right)$
or equivalent ly :
$F\left(x_{*}, y_{*}\right)=\max _{y} \min _{x} F(x, y)=\min _{x} \max _{y} F(x, y)$

* Lagrange duality

$>$ Recall the optimization problem:
Minimize $J(\theta) \quad$ s.t. $f_{i}(\theta) \geq 0$ for $i=1,2, \ldots, m$
Lagrange function : $L(\theta, \lambda)=J(\theta)-\sum_{i=1}^{m} \lambda_{i} f_{i}(\theta)$
Because $\max _{\lambda \geq 0} L(\theta, \lambda)=J(\theta)$, we have

$$
\min _{\theta} J(\theta)=\min _{\theta} \max _{\lambda \geq 0} L(\theta, \lambda)
$$

> Convex Programming
For a large class of applicatio ns, $J(\theta)$ is convex, $f_{i}(\theta)$'s are concave then, the minimizati on solution $\left(\theta_{*}, \lambda_{*}\right)$ is a saddle point of $L(\theta, \lambda)$

$$
\begin{gathered}
L\left(\theta_{*}, \lambda\right) \leq L\left(\theta_{*}, \lambda_{*}\right) \leq L\left(\theta, \lambda_{*}\right) \\
L\left(\theta_{*}, \lambda_{*}\right)=\min _{\theta} \max _{\lambda \geq 0} L(\theta, \lambda)=\max _{\lambda \geq 0} \min _{\theta} L(\theta, \lambda)
\end{gathered}
$$

Therefore, the optimizati on problem becomes $\max _{\lambda \geq 0} \min _{\theta} L(\theta, \lambda)$, or

$$
\max _{\lambda \geq 0} L(\theta, \lambda) \quad \text { subject to } \frac{\partial}{\partial \theta} L(\theta, \lambda)=0
$$

MUCH SIMPLER!

Mercer's Theorem and the Kernel Method

* Mercer's theorem:

Let $x \in \mathfrak{R}^{l}$ and given a mapping $\phi(x) \in H$,
(H denotes Hilbert space, i.e. finite or infinite Euclidean space)
the inner product $\langle\phi(x), \phi(y)\rangle$ can be expressed as a kernelfunction

$$
\langle\phi(x), \phi(y)\rangle=K(x, y)
$$

where $K(x, y)$ is symmetric, continuous , and positive semi-definite.
The opposite is also true.
The kernel method can transform any algorithm that solely depends on the dot product between two vectors to a kernelized vesion, by replacing dot product with the kernel function. The kernelized version is equivalent to the algorithm operating in the range space of φ. Because kernels are used, however, φ is never explicitly computed.

