
1

Ch 4: Non Linear Classifiers

 The XOR problem
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 There is no single line (hyperplane) that separates
class A from class B. On the contrary, AND and OR
operations are linearly separable problems
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 The Two-Layer Perceptron

 For the XOR problem, draw two, instead, of one lines
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 Then class B is located outside the shaded area and
class A inside. This is a two-phase design.

• Phase 1: Draw two lines (hyperplanes)

Each of them is realized by a perceptron. The
outputs of the perceptrons will be

depending on the position of x.

• Phase 2: Find the position of x w.r.t. both lines,
based on the values of y1, y2.
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• Equivalently:  The computations of the first phase 
perform a mapping

2nd

phase

1st phase

y2y1x2x1

B(0)0(-)0(-)00

A(1)0(-)1(+)10

A(1)0(-)1(+)01

B(0)1(+)1(+)11
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The decision is now performed on the transformed
data.

This can be performed via a second line, which can also 
be realized by a perceptron.
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 Computations of the first phase perform a
mapping that transforms the nonlinearly
separable problem to a linearly separable one.

 The architecture
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 This is known as the two layer perceptron with
one hidden and one output layer. The activation
functions are

 The neurons (nodes) of the figure realize the
following lines (hyperplanes)
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 Classification capabilities of the two-layer perceptron

 The mapping performed by the first layer neurons is onto the 
vertices of the unit side square, e.g., 
(0, 0), (0, 1), (1, 0), (1, 1).

 The more general case,
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 performs a mapping of a vector onto the vertices of
the unit side Hp hypercube

 The mapping is achieved with p neurons each
realizing a hyperplane. The output of each of these
neurons is 0 or 1 depending on the relative position of
x w.r.t. the hyperplane.

 Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.
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For example, the 001 vertex corresponds to the 
region which is located 

to the (-) side of g1 (x)=0

to the (-) side of g2 (x)=0

to the (+) side of g3 (x)=0

-y1 - y2 +y3 +0.5=0

corresponds to virtual polyhedra

.
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 The output neuron subsequently realizes another
hyperplane, which separates the hypercube into two
parts, having some of its vertices on one and some on
the other side.

 The output neuron realizes a hyperplane in the
transformed space, that separates some of the
vertices from the others. Thus, the two layer
perceptron has the capability to classify vectors into
classes that consist of unions of polyhedral
regions. But NOT ANY union. It depends on the
relative position of the corresponding vertices.

 A three-layer perceptron architecture can separate
classes resulting from ANY union of polyhedral regions.

y
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 Three layer-perceptrons

 The architecture

 This is capable to classify vectors into classes consisting
of ANY union of polyhedral regions.

 The idea is similar to the XOR problem. It realizes
more than one planes in the space.
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 The reasoning 

• For each vertex, corresponding to class, say A, 
construct a hyperplane which leaves THIS vertex on 
one side (+) and ALL the others to the other side (-).

• The output neuron realizes an OR gate

 Overall:

The first layer of the network forms the hyperplanes, 
the second layer forms the regions and the output 
neuron forms the classes.

 Designing Multilayer Perceptrons
 One direction is to adopt the above rationale and develop 

a structure that classifies correctly all the training 
patterns.

 The other direction is to choose a structure and compute 
the synaptic weights to optimize a cost function. 
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 The Backpropagation Algorithm

 This is an algorithmic procedure that computes the
synaptic weights iteratively, so that an adopted cost
function is minimized (optimized)

 In a large number of optimizing procedures,
computation of derivatives are involved. Hence,
discontinuous activation functions pose a problem, i.e.,

 There is always an escape path!!! The logistic function

is an example. Other functions are also possible and
in some cases more desirable.
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 The steps:

Adopt an optimizing cost function, e.g.,

• Least Squares Error

• Relative Entropy

between desired responses and actual responses of 
the network for the available training patterns.  That 
is, from now on we have to live with errors.  We only 
try to minimize them, using certain criteria.

Adopt an algorithmic procedure for the optimization 
of the cost function with respect to the synaptic 
weights.   e.g.,

• Gradient descent

• Newton’s algorithm

• Conjugate gradient
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L= # of layers ,   kr= # of nodes in the rth layer, k0=l

The input (feature) vectors x(i)=[x1(i), . . . , xk0
(i)]T

The output vectors y(i)=[y1(i), . . . , ykL
(i)]T

The weight vector (including the threshold) of the jth neuron 
in the rth layer, which is a vector of dimension kr-1 +1 is 
defined as:

The task is a nonlinear optimization one.  For the gradient 
descent method

(new) (old)
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Where J is a Cost function 
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 The Procedure:

 Initialize unknown weights randomly with small values.

 For each of the training feature vectors compute outputs. Compute 
the cost function for the current estimate of weights.

 Compute the gradient terms backwards, starting with the weights of 
the last (3rd) layer and then moving towards the first

 Update the weights

 Repeat the procedure until a termination procedure is met

 Two major philosophies:

 Batch mode:  The gradients of the last layer are computed once ALL 
training data have appeared to the algorithm, i.e., by summing up all 
error terms.

 Pattern mode:  The gradients are computed every time a new 
training data pair appears.  Thus gradients are based on successive 
individual errors. 

 A major problem:  The algorithm may converge to a local 
minimum
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 The Cost function choice

Examples:

• The Least Squares

Desired response of the mth output neuron
(1 or 0)  for

Actual response of the mth output neuron,  
in the interval [0, 1], for input
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we define

1r
kv 

1rk  rk

Layer 1r  Layer r
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where

;

The computations start from r=L and propagate backward for    
r=L-1, L-2, . . . , 1.

1. r = L
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2. r < L

But

with

Hence,
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where

Demo: nnd11bc nnd11fa nnd11gn

The Backpropagation Algorithm

1- Initialization

2- Forward computations:

3- Backward computations:

4- Update the weights



VARIATIONS ON THE BACKPROPAGATION THEME

 Use Momentum term
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 Use an adaptive value for the 
learning factor

 delta-delta rule 
 Conjugate gradient algorithm
 Newton family approaches
 Algorithms based on the Kalman 

filtering approach
 Levenberg–Marquardt algorithm
 Quickprop & Rprop schemes

Adaptive learning factor μ

μ=0.01, α=0.85,
ri=1.05, c=1.05, rd =0.7.

the momentum factor 0.1<<0.8



The cross-entropy

 At the least squares cost function all errors in the 
output nodes are first squared and summed up, large 
error values influence the learning process much 
more than the small errors.

 If the dynamic ranges of the desired outputs are not 
all of the same order, the least squares criterion will 
result in weights that have "learned" via a process of 
unfair provision of information.

 In Ch 3 we have seen that, if we adopt the least 
squares cost function and the desired outputs yk are 
binary (belong to or not in class ωk), then for the 
optimal values of the weights w* the corresponding 
output of the network, yˆk, is the least squares 
optimal estimate of the posterior probability P(ωk\x)

27



 Assume the desired output values, yk, are independent binary random 
variables and that yˆk are the respective posterior probabilities that 
these random variables are 1.

 The cross-entropy cost function is then defined by

 J takes its minimum value when 

 If           were true probabilities in (0, 1) then subtracting the 
minimum value from J becomes

 For binary valued yks the above is still valid if we use the limiting 

value 0 ln0=0.
28
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 The cross-entropy cost function depends on the 
relative errors and not on the absolute errors, as its 
least squares counterpart; thus it gives the same 
weight to small and large values. 

 It can be shown that adopting the cross-entropy cost 
function and binary values for the desired  responses, 
the outputs yˆk corresponding to the optimal weights 
w* are indeed estimates of P(ωk\x), as in the least 
squares case. This presupposes an interpretation of y
and yˆ as probabilities. 

 An alternative cost function is the relative entropy or 
KL divergence, (rarely used)
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 Remark 1:  A common feature of all the above is the danger of 
local minimum convergence.  “Well formed” cost functions
guarantee convergence to a “good” solution, that is one that 
classifies correctly ALL training patterns, provided such a solution 
exists.  The cross-entropy cost function is a well formed one.
The Least Squares is not.

 Remark 2: Both, the Least Squares and the cross entropy lead to 
output values that approximate optimally class a-posteriori 
probabilities!!!

That is, the probability of class ωm given

This is a very interesting result. It does not depend on the
underlying distributions. It is a characteristic of certain cost
functions. How good or bad is the approximation, depends on
the underlying model. Furthermore, it is only valid at the global
minimum.
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Choice of the network size.
How big a network can be. How many layers and how
many neurons per layer?

 The number of free parameters (synaptic weights) to
be estimated should be

 (a) large enough to learn what makes “similar” the
feature vectors within each class and at the same time
what makes one class different from the other.

 (b) small enough, with respect to number N of training
pairs, so as not to be able to learn the underlying
differences among the data of the same class.

There are 3 major directions:

• 1) Analytical methods. This category employs algebraic
or statistical techniques to determine the number of its
free parameters. It is static and does not take into
consideration the cost function used as well as the
training procedure
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• 2) Pruning Techniques: These techniques start from a 
large network and then weights and/or neurons are 
removed iteratively, according to a criterion.

—Methods based on parameter sensitivity: Taylor series Exp.

Near a minimum and assuming that the Hessian matrix is 
diagonal
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Pruning is now achieved in the following procedure:

Train the network using Backpropagation for a number of 
steps

 Compute the saliencies

 Remove weights with small si.

 Repeat the process

—Methods based on function regularization

 The first term is the performance cost function, and it is 
chosen according to what we have already discussed 
(e.g., least squares, cross entropy).
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 The second term favors small values for the weights, 
e.g.,

where
After some training steps, weights with small values are 
removed.

• 3) Constructive techniques:
They start with a small network and keep increasing 
it, according to a predetermined procedure and 
criterion.
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chosen differentiable 
function.
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 Remark: Why do not start with a large network and 
leave the algorithm to decide which weights are small? 

 This approach is just naïve. It overlooks that classifiers 
must have good generalization properties.  A large 
network can result in small errors for the training set, 
since it can learn the particular details of the training set.  
On the other hand, it will not be able to perform well 
when presented with data unknown to it.  The size of the 
network must be:

Large enough to learn what makes data of the same 
class similar and data from different classes dissimilar

Small enough not to be able to learn underlying 
differences between data of the same class.  Too 
many parameters leads to the so called overfitting.
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400 training Samples
The mean values
Variances=0.08

Example: NN:  (2-3-2-1) ; Logistic Function with a=1. 
(a) The momentum μ=0.05, α=0.85 and 
(b) The adaptive momentum μ=0.01, α=0.85, ri=1.05, c=1.05, rd =0.7.

[0.4, 0.9]T, [2, 1.8]T, [2.3, 2.3]T, [2.6, 1.8]T

[1.5, 1.0]T, [1.9, 1.0]T, [1.5, 3.0]T, [3.3, 2.6]T
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MLP: (2-20-20-1)
Decision curve (a) before pruning and (b) after pruning.
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 Overtraining is another side of the same coin, i.e., the 
network adapts to the peculiarities of the training set.
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 Generalized Linear Classifiers

 Remember the XOR problem.  The mapping

The activation function transforms the 
nonlinear task into a linear one.

 In the more general case:

• Let and a nonlinear classification task.
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 Are there any functions and an appropriate k, so that 
the mapping

transforms the task into a linear one, in the 
space?

 If this is true, then there exists a hyperplane
so that
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 In such a case this is equivalent with approximating
the nonlinear discriminant function g(x), in terms

of i.e.,

 Given , the task of computing the weights is
a linear one.

 How sensible is this?

From the numerical analysis point of view, this is
justified if are interpolation functions.

From the Pattern Recognition point of view, this is
justified by Cover’s theorem.
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Generalized Linear Classification.

g(x) corresponds to a two-layer network where the nodes of the 
hidden layer have different activation functions, fi(·), i=1, 2, ..., k.
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 Capacity of the l-dimensional space in Linear
Dichotomies

 Assume N points in assumed to be in general
position, that is:

lR

Not of these lie on a dimensional space1 1

Not in general position general position
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Cover’s theorem states:  The number of groupings 
that can be formed by (l-1)-dimensional hyperplanes
to separate N points in two classes is

Example: N=4, l=2, O(4,2)=14, and O(3, 2) = 8
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Notice: The total number of possible groupings is 24=16
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 Probability of grouping N points in two linearly separable 
classes is
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Thus, the probability of having N points in linearly separable
classes tends to 1, for large l , provided N < 2(l+1).

Hence, by mapping to a higher dimensional space, we
increase the probability of linear separability, provided the
space is not too densely populated.

POLYNOMIAL CLASSIFIERS

Function g(x) is approximated in terms of up to order r
polynomials of the x components, for large enough r. 
For the special case of r =2 we have:
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XOR problem:
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Radial Basis Function Networks (RBF)

 Choose
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Equivalent to a single layer network, with RBF 
activations and linear output node.
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 Example: The XOR problem

• Define:

•

2

1
  

0

0
  

1

1
2121 

















 ,c,c







































































368.0

368.0

1

0
    ,

368.0

368.0

0

1

135.0

1

1

1
    ,

1

135.0

0

0

2

1

2

2

exp( )
( )

exp( )

x c
y y x

x c

  
  
   

 2
( ) exp iif x x c  



51

01)exp()exp()(
2

2

2

1  cxcxxg

01yyyg 21 )(



52

 Training of the RBF networks

 Fixed centers:  Choose centers randomly among the data 
points.  Also fix σi’s.  Then

is a typical linear classifier design.

 Training of the centers:  This is a nonlinear optimization task

 Combine supervised and unsupervised learning procedures.

 The unsupervised part reveals clustering tendencies of the 
data and assigns the centers at the cluster representatives.
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54FIGURE 5.5 RBF network trained with K-means and RLS algorithms for distance d = -5. 
The MSE in part (a) of the figure stands for mean-square error.
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FIGURE 5.6 RBF network trained with K-means and RLS algorithms for distanced d=-6. 
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 Universal Approximators

It has been shown that any nonlinear continuous function can
be approximated arbitrarily close, both, by a two layer
perceptron, with sigmoid activations, and an RBF network,
provided a large enough number of nodes is used.

 Multilayer Perceptrons vs. RBF networks

 MLP’s involve activations of global nature. All points on a

plane give the same response.

 RBF networks have activations of a local nature, due to the
exponential decrease as one moves away from the centers.

 MLP’s learn slower but have better generalization
properties.

cxwT 
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 Support Vector Machines: The non-linear case

 Recall that the probability of having linearly separable
classes increases as the dimensionality of the feature
vectors increases. Assume the mapping:

Then use SVM in Rk

 Recall that in this case the dual problem formulation will be
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Also, the classifier will be

Thus, inner products in a high dimensional space
are involved, hence

• High complexity
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Nonlinear Support Vector Machines

Alternative 1:
Use technique that
Employs non-
linear decision 
boundaries

Non-linear function

 What if decision boundary is not linear?
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Alternative 2:

Transform into a higher 
dimensional attribute 
space and find  linear 
decision boundaries in 
this space

1. Transform data into higher dimensional space

2. Find the best hyperplane using the methods introduced 
earlier

61

Nonlinear Support Vector Machines
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 Something clever: Compute the inner products in the
high dimensional space as functions of inner products
performed in the low dimensional space!!!

 Is this POSSIBLE? Yes. Here is an example

 Then, it is easy to show that

 

3

2
2

21

2
1

2
21

2Let  

 ,Let  

R

x

xx

x

yx

Rxxx
T























2)( j

T

ij

T

i
xxyy 



63

**Mercer’s Theorem

Then, the inner product in H is represented as:

where K(x,z) is a symmetric continuous function satisfying

for any such that:

K(x, z) is a symmetric function known as kernel.

Hxx  )(Let 
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H: Hilbert Space*

C:  Compact (finite) Subset of Rl.

( ),   lg x x C R 

* A Hilbert space is a complete linear space equipped with an inner product 
operation. A finite dimensional Hilbert space is a Euclidean space.



64

 The opposite is also true.  Any kernel, with the above 
properties, corresponds to an inner product in SOME
space!!!

 Examples of kernels

• Polynomial:

• Radial  Basis Functions:

• Hyperbolic Tangent:

for appropriate values of β, γ.
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 SVM Formulation 

• Step 1: Choose appropriate kernel.  This 
implicitly assumes a mapping to a 
higher dimensional (yet, not known)
space.

• Step 2:

This results to an implicit combination
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• Step 3: Assign x to

• The SVM Architecture
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Example of a nonlinear SVM classifier for the case of two nonlinearly 
separable classes. The Gaussian RBF kernel was used. Dotted lines 
mark the margin and circled points the support vectors.



68(a) Training result



69(a) Testing result



70SVM - Degree-4 Polynomial in Feature Space



71SVM - Radial Kernel in Feature Space



 Remarks: If the kernel function is the RBF, then the architecture is the
same as the RBF network architecture. However, the approach
followed here is different.

 In the SVM, the number of nodes as well as the centers are the result
of the optimization procedure.

 If the hyperbolic tangent function (sigmoid) is chosen as a kernel, the
resulting architecture is a special case of a two-layer perceptron. Once
more, the number of nodes is the result of the optimization procedure.
This is important. Although the SVM architecture is the same as that
of a two-layer perceptron, the training procedure is entirely different
for the two methods. The same is true for the RBF networks.

 In the SVM the computational complexity is independent of the
dimensionality of the kernel space, where the input feature space is
mapped. Thus, the curse of dimensionality is bypassed. In other words,
one designs in a high-dimensional space without having to adopt
explicit models using a large number of parameters, as this would be
dictated by the high dimensionality of the space. This also has an
influence on the good generalization properties of SVMs. 72
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Decision Trees

This is a family of non-linear classifiers. They are multistage decision
systems, in which classes are sequentially rejected, until a finally
accepted class is reached. To this end:

 The feature space is split into unique regions in a sequential
manner.

 Upon the arrival of a feature vector, sequential decisions, assigning
features to specific regions, are performed along a path of nodes
of an appropriately constructed tree.

 The sequence of decisions is applied to individual features, and the
queries performed in each node are of the type:

is feature

where α is a pre-chosen (during training) threshold.

?ix 
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 The figures below are such examples. This type of trees is
known as Ordinary Binary Classification Trees (OBCT). The
decision hyperplanes, splitting the space into regions, are
parallel to the axis of the spaces. Other types of partition
are also possible, yet less popular.



75

 Design Elements that define a decision tree.

Each node, t, is associated with a subset ,
where X is the training set. At each node, Xt is split
into two (binary splits) disjoint descendant subsets
Xt,Y and Xt,N, where

Xt,Y  Xt,N = Ø

Xt,Y  Xt,N = Xt

 Xt,Y is the subset of Xt for which the answer to the
query at node t is YES. Xt,N is the subset
corresponding to NO. The split is decided according
to an adopted question (query).

XΧ t 
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• A splitting criterion must be adopted for the best split of Xt

into Xt,Y and Xt,N.

• A stop-splitting criterion must be adopted that controls the
growth of the tree and a node is declared as terminal (leaf).

• A rule is required that assigns each (terminal) leaf to a class.

 Set of Questions: In OBCT trees the set of questions is
of the type

is ?

 The choice of the specific xi and the value of the
threshold α, for each node t, are the results of
searching, during training, among the features and a set
of possible threshold values. The final combination is
the one that results to the best value of a criterion.

ix 
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 Splitting Criterion: The main idea behind splitting at each
node is the resulting descendant subsets Xt,Y and Xt,N to be
more class homogeneous compared to Xt. Thus the criterion
must be in harmony with such a goal. A commonly used
criterion is the node impurity:

and

where is the number of data points in Xt that belong to
class i. The decrease in node impurity is defined as:
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Note: I(t) is the entropy associated with the subset Xt .
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• The goal is to choose the parameters in each node
(feature and threshold) that result in a split with the
highest decrease in impurity.

• Why highest decrease? Observe that the highest value of
I(t) is achieved if all classes are equiprobable, i.e., Xt is
the least homogenous.

 Stop - splitting rule. Adopt a threshold T and stop splitting a
node (i.e., assign it as a leaf), if the impurity decrease is less
than T. That is, node t is “pure enough”.

 Class Assignment Rule: Assign a leaf to a class j , where:

)|(maxarg tPj i
i
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 Summary of an OBCT algorithmic scheme:
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 Remarks:

A variety of node impurity measures can be defined.

A critical factor in the design is the size of the tree.
Usually one grows a tree to a large size and then
applies various pruning techniques.

Decision trees belong to the class of unstable
classifiers. This can be overcome by a number of
“averaging” techniques. Bagging is a popular
technique. Using bootstrap techniques in X, various
trees are constructed, Ti, i=1, 2, …, B for B variants, X1,
X2, . . . ,XB, of the training set,. The decision is taken
according to a majority voting rule.

More general partition of the feature space, via
hyperplanes not parallel to the axis, is possible via
questions of the type:

1

Is ?
l

k k
k

c x 
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Figure 8.5: If the class 
of node decisions does 
not match the form of 
the training data, a very 
complicated decision 
tree will result, as 
shown at the top. Here 
decisions are parallel to 
the axes while in fact 
the data is better split 
by boundaries along 
another direction. If 
however “proper” 
decision forms are used 
(here, linear 
combinations of the 
features), the tree can 
be quite simple, as 
shown at the bottom.

Feature choice
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Entropy impurity at 
nonterminal nodes is 
shown in red and 
impurity at each leaf 
node is 0

Instability or sensitivity of tree 
to training points; alteration 
of a single point leads to a 
very different  tree; this is 
due to discrete & greedy 
nature of CART 
(Classification And 
Regression Trees)
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Example 

Play TennisWindHumidityTemp.OutlookDay

NoWeakHighHotSunnyD1

NoStrongHighHotSunnyD2

YesWeakHighHotOvercastD3

YesWeakHighMildRain D4 

YesWeakNormalCoolRainD5

NoStrongNormalCoolRainD6

YesWeakNormalCoolOvercastD7

NoWeakHighMildSunnyD8

YesWeakNormalCoolSunnyD9

YesStrongNormalMildRainD10

YesStrongNormalMildSunnyD11

YesStrongHighMildOvercastD12

YesWeakNormalHotOvercastD13

NoStrongHighMildRainD14

Consider the following table 
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Example 

 We want to build a decision tree for the tennis 
matches

 The schedule of matches depend on the weather 
(Outlook, Temperature, Humidity, and Wind)

 Calculating the information gains for each of the 
weather attributes:
 For the Outlook

 For the Temperature

 For the Humidity

 For the Wind 

Information gain (IG) measures how much “information” a feature 
gives us about the class.

Information Gain = entropy(parent) – [average entropy(children)]



For the Outlook 

86

Outlook

Sunny Rain

[2+, 3-] [3+, 2-]

S=[9+,5-]
E=0.940

E=0.971 E=0.971

Overcast

[4+, 0]

E=0.0

Gain(S,Outlook)

=0.940 – (5/14)*0.971 – (4/14)*0.0 – (5/14)*0.0971
=0.247

[positive, Negative]

Entropy(rootNode.subset) =   
-(9/14)log2(9/14) -
(5/14)log2 (5/14)=0.940
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For the Temperature 

Temperature

Hot Cool

[2+, 2-] [3+, 1-]

S=[9+,5-]
E=0.940

Mild

[4+, 2-]

Gain(S,Temperature)

=0.029



For the Humidity
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Humidity

High Normal

[6+, 1-]

S=[9+,5-]
E=0.940

[3+, 4-]

Gain(S,Humidity)

=0.940-(7/14)*0.985 – (7/14)*0.592
=0.151
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For the Wind

Wind

Weak Strong

[6+, 2-] [3+, 3-]

S=[9+,5-]
E=0.940

Gain(S,Wind):

=0.940 - (8/14)*0.811 - (6/14)*1.0
=0.048



Selecting the Next Attribute
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The information gain values for the 4 attributes 
are:
• Gain(S,Outlook) =0.247
• Gain(S,Humidity) =0.151
• Gain(S,Wind) =0.048
• Gain(S,Temperature) =0.029

where S denotes the collection of training examples
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Complete tree

Then here is the complete tree:

Outlook

Sunny Overcast Rain

Humidity

High Normal

Wind

Strong Weak

No Yes

Yes

YesNo

[D3,D7,D12,D13]

[D8,D9,D11] [D6,D14][D1,D2] [D4,D5,D10]
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 Combining Classifiers

The basic philosophy behind the combination of different
classifiers lies in the fact that even the “best” classifier fails in
some patterns that other classifiers may classify correctly.
Combining classifiers aims at exploiting this complementary
information residing in the various classifiers.

Thus, one designs different optimal classifiers and then

combines the results with a specific rule.

 Assume that each of the, say, L designed classifiers provides
at its output the posterior probabilities:

, ..., M, ixP i 21 ),|( 
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 Product Rule: Assign to the class :

where is the respective posterior prob. of the jth classifier.

Proof: By minimizing the average Kullback–Leibler (KL) distance
between probabilities, by employing Lagrange multiplies
optimization.

Taking into account that

Neglecting all the terms common to all classes classification
rule is Assign x to the class:

x i  
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Optimization →
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 Sum Rule: Assign to the class :

Proof: Using the alternative KL distance formulation.
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|maxarg x i

 Although the product rule often produces better results than the 
sum rule, it may lead to less reliable results when the outputs of  
some of  the classifiers result in values close to zero.
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 Optimization →
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 Majority Voting Rule: Assign x to the class for which
there is a consensus or when at least lc of the classifiers

agree on the class label of x where:

otherwise the decision is rejection, that is no decision is
taken.

Thus, correct decision is made if the majority of the
classifiers agree on the correct label, and wrong decision if
the majority agrees in the wrong label.

1,     even
2

1
,     odd

2

c

L
L

L
L
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 Dependent or not Dependent classifiers?

Although there are not general theoretical results,
experimental evidence has shown that the more
independent in their decision the classifiers are, the
higher the expectation should be for obtaining improved
results after combination. However, there is no guarantee
that combining classifiers results in better performance
compared to the “best” one among the classifiers.

 Towards Independence: A number of Scenarios.

Train the individual classifiers using different training
data points. To this end, choose among a number of
possibilities:
Bootstrapping: This is a popular technique to combine unstable

classifiers such as decision trees (Bagging belongs to this
category of combination).
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 Stacking: Train the combiner with data points that have been
excluded from the set used to train the individual classifiers.

 Use different subspaces to train individual classifiers: According
to the method, each individual classifier operates in a different
feature subspace. That is, use different features for each
classifier.

 Remarks:

 The majority voting and the summation schemes rank among
the most popular combination schemes.

 Training individual classifiers in different subspaces seems to
lead to substantially better improvements compared to
classifiers operating in the same subspace.

 Besides the above three rules, other alternatives are also
possible, such as to use the median value of the outputs of
individual classifiers.
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 The Boosting Approach

 The origins: Is it possible a weak learning algorithm (one
that performs slightly better than a random guessing) to be
boosted into a strong algorithm? (Villiant 1984).

 The procedure to achieve it:

• Adopt a weak classifier known as the base classifier.

• Employing the base classifier, design a series of
classifiers, in a hierarchical fashion, each time employing
a different weighting of the training samples. Emphasis in
the weighting is given on the hardest samples, i.e., the
ones that keep “failing”.

• Combine the hierarchically designed classifiers by a
weighted average procedure.
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The AdaBoost (adaptive boosting) Algorithm.
Let the training data be {(x1 ,y1), (x2 ,y2), ..., (xN ,yN)}

with yi ∈ {-1,1}, i = 1, 2, ..., N.

Construct an optimally designed classifier of the form:

where:

where denotes the base classifier that returns a
binary class label:

is a parameter vector.

 )(sign)( xFxf 
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 The essence of the method.
Design the series of classifiers:

The parameter vectors

are optimally computed so as: To minimize the error rate on the
training set.
 Each time, the training samples are re-weighted so that the

weight of each sample depends on its history. Hard samples
that “insist” on failing to be predicted correctly, by the
previously designed classifiers, are more heavily weighted.

 Optimizing to find the unknown parameters (highly
complex) :

 It penalizes the samples that are wrongly classified much
more heavily than those correctly classified.

     1 2; ,  ; ,  ...,  ; Kx x x     
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Optimization

 Stage-wise optimization (suboptimal)

 At each step, a new parameter is considered and 
optimization is carried out with respect to this parameter, 
leaving unchanged the previously optimized ones.

 We define Fm(x) to denote the result of the partial sum 
up to m terms.

 Recursion form is:

 The task at step m is to compute 

 Where the cost function is defined as
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 First, α will be considered constant, and the cost will 
be optimized with respect to the base classifier

 That is, the cost to be minimized is now simplified to

 Since each depends neither on α nor on             
it can be regarded as a weight associated with the 

sample point xi . 

 Since the base classifier is binary                           
it is easy to see that minimizing is equivalent to 
designing the optimal classifier              so that the 
weighted empirical error (the fraction of the training 
samples that are wrongly classified) is minimum.
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 To guarantee that the value of the weighted empirical 
error rate remains in the interval [0, 1], the weights 
must sum to one. 

 Combining above Eqs. the optimum value, αm, results 
from

 Taking the derivative with respect to α and equating to 
zero, we obtain

 Once αm and             have been computed, the weights 
for the next step are readily available via the iteration. 103

  ( )

1

arg min 1 ; .
N

m
m m i i i

i

P w I y x


  


 
   

 


   

( ) ( )

; 0 ; 0

,    1
i i m i i m

m m
i m i m

y x y x

w P w P
    

   

 arg min exp( )(1 ) exp( )( )m m mP P


     

11
ln

2
m

m

m

P

P





 ;i mx 

That is, 



104

 Updating the weights for each sample

 Zm is a normalizing factor common for all samples.



where Pm<0.5 (by assumption) is the error rate of the optimal

classifier at stage m. Thus αm > 0.

 The term:

takes a large value if (wrong classification) and

a small value in the case of correct classification

 The update equation is of a multiplicative nature. That is,
successive large values of weights (hard samples) result in larger
weight for the next iteration
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• The algorithm



Properties

Boosting has relative immunity to overfitting.

It has been verified that, although the 
number of terms, K, and consequently the 
associated number of parameters can be 
quite high, the error rate on a test set does 
not increase but keeps decreasing and finally 
levels off at a certain value.

It has been observed that the test error 
continues to decrease long after the error on 
the training set has become zero.
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Example 4.3:
Let us consider a two-class classification task. The data reside 
in the 20-dimensional space and obey a Gaussian distribution 
of unit covariance matrix and mean values [-a,-a, ... ,-a]T,  
[a, a, . . . , a]T , respectively, for each class, where a= 2/√20. 
The training set consists of 200 points (100 from each class) 
and the test set of 400 points (200 from each class) 
independently generated from the points of the training set.

To design a classifier using the AdaBoost algorithm, we chose 
as a seed the weak classifier known as stump. This is a very 
“naive” type of tree, consisting of a single node, and 
classification of a feature vector x is achieved on the basis of 
the value of only one of its features, say, xi . Thus, if xi < 0, x
is assigned to class A. If xi > 0, it is assigned to class B. 
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The decision about the choice of the specific feature, xi , to be 
used in the classifier was randomly made. Such a classifier 
results in a training error rate slightly better than 0.5. 

The AdaBoost algorithm was run on the training data for 
2000 iteration steps. Figure 4.30 verifies the fact that the 
training error rate converges to zero very fast. The test error 
rate keeps decreasing even after the training error rate 
becomes zero and then levels off at around 0.05. 

Figure 4.31 shows the margin distributions, over the training 
data points, for four different training iteration steps. It is 
readily observed that the algorithm is indeed greedy in 
increasing the margin. Even when only 40 iteration steps are 
used for the AdaBoost training, the resulting classifier 
classifies the majority of the training samples with large 
margins. 
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Using 200 iteration steps, all points are correctly classified 
(positive margin values), and the majority of them with large 
margin values. From then on, more iteration steps further 
improve the margin distribution by pushing it to higher 
values.

The margin of a training example with respect to a classifier 
f is defined as

The margin lies in the interval [-1, 1] and is positive if and 
only if the respective pattern is classified correctly.
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 Remarks:
 Training error rate tends to zero after a few iterations. The

test error levels to some value.
 AdaBoost minimizes the upper bound of the training error by

properly choosing the optimal weak classifier and voting
weight.

 AdaBoost is greedy in reducing the margin that samples
leave from the decision surface.


