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The goals:
Select the “optimum” number l of features

Select the “best” l features

Large l has a three-fold disadvantage:

High computational demands

Low generalization performance

Poor error estimates

Ch5: FEATURE SELECTION
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 Given N

 l must be large enough to learn

• what makes classes different

• what makes patterns in the same class similar

 l must be small enough not to learn what makes
patterns of the same class different

 In practice, has been reported to be a
sensible choice for a number of cases

 Once l has been decided, choose the l most
informative features

Best:  Large between class distance, 
Small within class variance

3/Νl 
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 The basic philosophy

 Discard individual features with poor information content

 The remaining rich information features are examined 
jointly as vectors

 *5.4 Feature Selection based on statistical Hypothesis 
Testing

 The Goal:  For each individual feature, find whether the 
values, which the feature takes for the different classes,
differ significantly.
That is, answer

• : The values differ significantly

• : The values do not differ significantly

If they do not differ significantly reject feature from 
subsequent stages.

 * Hypothesis Testing Basics
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 The steps:

• N measurements                            are known

• Define a function of them

test statistic

so that is easily parameterized in terms of θ.

• Let D be an interval, where q has a high probability to lie 
under H0, i.e., pq(q׀θ0)

• Let be the complement of D
D Acceptance Interval

Critical Interval

• If q, resulting from 
lies in D we accept H0, otherwise we reject it.
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 Probability of an error

• ρ is preselected and it is known as the significance 
level.

 )( 0HDqpq

1-ρ
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 Application:  The known variance case:

 Let x be a random variable and the experimental 
samples,                 , are assumed mutually 
independent. Also let

 Compute the sample mean

 This is also a random variable with mean value

That is, it is an Unbiased Estimator
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 The variance

Due to independence

That is, it is Asymptotically Efficient

 Hypothesis test
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 Test Statistic: Define the variable

 Central limit theorem under H0

 Thus, under H0
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 The decision steps

• Compute q from xi, i=1,2,…,N

• Choose significance level ρ

• Compute from N(0,1) tables D=[-xρ, xρ]

•

 An example: A random variable x has variance
σ2=(0.23)2. Ν=16 measurements are obtained giving

.The significance level is ρ=0.05.

Test the hypothesis
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 Since σ2 is known, is N(0,1).  

From tables, we obtain the values with acceptance 
intervals [-xρ, xρ] for normal N(0,1)

 Thus
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ˆ
Prob 0.95

0.23 / 4
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ˆProb 0.113 0.113 0.95
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ˆProb 1.237 1.463 0.95
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 Since lies within the above acceptance
interval, we accept H0, i.e.,

The interval [1.237, 1.463] is also known as
confidence interval at the 1-ρ=0.95 level.

We say that: There is no evidence at the 5% level
that the mean value is not equal to

4.1ˆ 

4.1ˆ 

ˆ.
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 The Unknown Variance Case

 Estimate the variance.  The estimate

is unbiased, i.e.,

 Define the test statistic
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 This is no longer Gaussian.  If x is Gaussian, then

q follows a t-distribution, with N-1 degrees of freedom

 An example:

2 2

0

 is Gaussian, 16,  obtained from measurements, 

ˆ1.35 and (0.23) .  Test the hypothesis

ˆ:   1.4

at the significance level 0.025. 
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Table of acceptance intervals for t-distribution


ˆ

Prob 2.49 2.49 0.975
ˆ / 4

ˆ1.207 1.493

ˆThus, 1.4 is accepted

x 







 
    
 

 



0.990.9750.950.91-ρ
Degrees 

of 
Freedom

3.052.562.181.7812

3.012.532.161.7713

2.982.512.151.7614

2.952.492.131.7515

2.922.472.121.7516

2.902.462.111.7417

2.882.442.101.7318
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 Application in Feature Selection

 The goal here is to test, against zero, the difference
μ1-μ2 of the respective means in ω1, ω2 of a single 
feature.

 Let xi , i=1,…,N , the values of a feature in ω1

 Let yi , i=1,…,N , the values of the same feature in ω2

 Assume in both classes

(unknown or not)

 The test becomes
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 Define

z=x-y

 Obviously

E[z]=μ1-μ2 independence →

 Define the average

 Known Variance Case:  Define

 This is N(0,1) and one follows the procedure as before.
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 Unknown Variance Case:     Define the test statistic …

 is Chi-square distribution with 2N-2 degrees of freedom,

 q is t-distribution with 2N-2 degrees of freedom,

 Then apply appropriate tables as before.

 Example: The values of a feature in two classes are:

ω1:       3.5, 3.7, 3.9, 4.1, 3.4, 3.5, 4.1, 3.8, 3.6, 3.7

ω2:       3.2, 3.6, 3.1, 3.4, 3.0, 3.4, 2.8, 3.1, 3.3, 3.6

Test if the mean values in the two classes differ significantly, at the 
significance level ρ=0.05
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 We have

For N=10

 From the table of the t-distribution with 2N-2=18
degrees of freedom and ρ=0.05, we obtain
D=[-2.10, 2.10] and since q=4.25 is outside D, H1 is
accepted and the feature is selected.

2
1 1

2
2 2

ˆ:    3.73,   0.0601

ˆ:    3.25,   0.0672
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 The Receiver Operating Characteristics (ROC) Curve
 The hypothesis tests offer statistical evidence about the

difference of the mean values of a single feature in the
various classes.

 This information may not be sufficient to guarantee good
discrimination properties of a feature passing the test.

 We will now focus on techniques providing information
about the overlap between the classes.
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 We decide class ω1 for values on the left of the threshold 
and class ω2 for the values on the right.

 By moving the threshold over “all” possible positions, 
different values of α and β result.

 The less the overlap of the classes, the larger the area 
between the curve and the straight line (complete 
overlap).

 Thus, the aforementioned area varies between zero, for 
complete overlap, and 1/2 (the area of the upper 
triangle), for complete separation, and it is a measure of 
the class discrimination capability of the specific feature. 
In practice, the ROC curve can easily be constructed by 
sweeping the threshold and computing percentages of 
wrong and correct classifications over the available 
training feature vectors.
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Recall (also called sensitivity)
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 Class Separability Measures

The emphasis so far was on individually considered features.
However, such an approach cannot take into account existing
correlations among the features. That is, two features may be
rich in information, but if they are highly correlated we need not
consider both of them. To this end, in order to search for
possible correlations, we consider features jointly as elements of
vectors. To this end:

 Discard poor in information features, by means of a statistical
test.

 Choose the maximum number, , of features to be used. This
is dictated by the specific problem (e.g., the number, N, of
available training patterns and the type of the classifier to be
adopted).
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 Combine remaining features to search for the “best”
combination. To this end:

• Use different feature combinations to form the feature
vector. Train the classifier, and choose the combination
resulting in the best classifier performance.

A major disadvantage of this approach is the high
complexity. Also, local minima, may give misleading
results.

• Adopt a class separability measure and choose the best
feature combination against this cost.
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 Class separability measures: Let be the current feature
combination vector.

• Divergence. To see the rationale behind this cost, consider
the two – class case. Obviously, if on the average the

value of is close to zero, then should

be a poor feature combination. Define:

d12 is known as the divergence and can be used as a
class separability measure.
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• For the multi-class case, define dij for every pair of
classes i, j and the average divergence is defined as

• Some properties:

• Large values of d are indicative of good feature
combination.
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 If the components of the feature vector are 
statistically independent

 If the density functions are Gaussians N(μi , Σi) and 
N(μj , Σj) the divergence is simplified as:

 For the one-dimensional case this becomes

 A class separability measure cannot depend only on 
the difference of the mean values; it must also be 
variance dependent.
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 If the covariance matrices of the two Gaussian 
distributions are equal Σi = Σj= Σ

which is nothing other than the Mahalanobis distance 
between the corresponding mean vectors.

 In this case we have a direct relation between the 
divergence dij and the Bayes error—that is, the 
minimum error we can achieve by adopting the 
specific feature vector.
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 In the sequel, we will try to define class 
separability measures with a closer relationship to 

the Bayes error.



Error Bounds for Normal Densities

The full calculation of the error for the Gaussian 
case would be quite difficult, especially in high 
dimensions, because of the discontinuous nature 
of the decision regions in the integral.

In the two-category case the general error integral 
can be approximated analytically to give us an 
upper bound on the error. 30



Chernoff Bound

To derive a bound for the error, we need the 
following inequality:

min[a, b] ≤ aβb1−β for a, b ≥ 0 and 0 ≤ β ≤ 1.

Assume a ≥ b. Thus we need only show that          
b ≤ aβb1−β = (a/b)βb. But this inequality is 
manifestly valid, since (a/b)β ≥ 1.

We had 

31

 








 dxxpxerrorPdxxerrorperrorP )()|(),()(



32

Thus we apply this inequality to get the bound:

This integral is over all feature space.

If the conditional probabilities are normal, this integral can 
be evaluated analytically, yielding:

where
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FIGURE 2.18. The Chernoff error bound is never looser than 
the Bhattacharyya bound. For this example, the Chernoff bound 
happens to be at β*= 0.66, and is slightly tighter than the 
Bhattacharyya bound (β = 0.5).



k(β) is called Chernoff  distance. The Chernoff 
bound, on P(error) is found by analytically or 
numerically finding the value of β that minimizes 
Pβ(ω1)P

1−β(ω2) e
−k(β) and substituting the results in 

Eq. P(error)=…

Bhattacharyya Bound

Slightly less tight bound can be derived simply by 

setting the results for β = 1/2. This result is the so-

called Bhattacharyya bound on the error. Thus,
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The term k(1/2) is called Bhattacharyya distance, and will be used 
as an important measure of the separability of two distributions.
The Chernoff and Bhattacharyya bounds may still be used even if 
the underlying distributions are not Gaussian. However, for 
distributions that deviate markedly from a Gaussian, the bounds 
will not be informative.

where
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Example 5.4
Assume that P(ω1)=P(ω2) and that the corresponding 
distributions are Gaussians, N(μ ,σ1

2I) and N(μ , σ2
2I). 

The Bhattacharyya distance becomes

For the one-dimensional case l = 1 and for σ1 =10σ2, 
k(1/2)= 0.8097 and Pe ≥ 0.2225.
If σ1 =100σ2, k(1/2)= 1.9561 and Pe ≥ 0.0707.

Thus, the greater the difference of the variances, the 
smaller the error bound. The decrease is bigger for 
higher dimensions due to the dependence on l.
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Gaussian pdfs with the same mean and different 
variances (σ1 =1, σ2=0.01).
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Scatter Matrices. These are used as a measure of the

way data are scattered in the respective feature space.

Within-class scatter matrix

where

and

ni the number of training samples in i.

trace{Sw} is a measure of the average variance of the
features.
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 Between-class scatter matrix

trace{Sb} is a measure of the average distance of the mean
of each class from the respective global one.

 Mixture scatter matrix

It turns out that:

Sm = Sw + Sb
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 Measures based on Scatter Matrices.

•

•

•

Other criteria are also possible, by using various
combinations of Sm, Sb, Sw.

 The above J1, J2, J3 criteria take high values for the cases
where:

• Data are clustered together within each class.

• The means of the various classes are far.
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Figure 5.5 Shows three cases of classes at different locations and 
within-class variances. The resulting values for the J3 criterion 
involving the Sw and Sm matrices are 164.7, 12.5, and 620.9 for the 
cases in Figures 5.5a, b, and c, respectively. That is, the best is for 
distant well-clustered classes and the worst for the case of closely 
located classes with large within- class variance.

J3=164.7
J3=12.5

J3=620.9



Other Scatter Matrices Criteria

• The sum of squared error is defined as

• The trace (sum of diagonal elements) is the 
simplest scalar measure of the scatter matrix, as 
it is proportional to the sum of the variances in 
the coordinate directions
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• Fisher’s discriminant ratio. In one dimension and for
two equiprobable classes the determinants become:

and

known as Fisher’s Discriminant Ratio (FDR).

• For the multiclass case, averaging forms of FDR can
be used
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 Ways to combine features:

Trying to form all possible combinations of features from an
original set of m selected features is a computationally hard task.
Thus, a number of suboptimal searching techniques have been
derived.

 Sequential backward selection. Let x1, x2, x3, x4 the available
features (m=4). The procedure consists of the following
steps:

 Adopt a class separability criterion C (could also be the
error rate of the respective classifier). Compute its value
for ALL features considered jointly [x1, x2, x3, x4]

T.

 Eliminate one feature and for each of the possible resulting
combinations, that is [x1, x2, x3]

T, [x1, x2, x4]
T, [x1, x3, x4]

T, [x2, x3,
x4]

T, compute the class separability criterion value C. Select
the best combination, say [x1, x2, x3]

T.



Feature Subset Selection
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• From the above selected feature vector eliminate one feature and 
for each of the resulting combinations,           ,            ,
compute and select the best combination.

The above selection procedure shows how one can start from m
features and end up with the “best” ones. Obviously, the choice 
is suboptimal. The number of required calculations is:

(for m=20, l =5, the number equals 196.)

In contrast, a full search requires:

operations (for m=20, l =5, the number equals 15,504.).
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Example
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Results of sequential backward feature selection for classification of a satellite 
image using 28 features. x-axis shows the classification accuracy (%) and y-axis 
shows the features removed at each iteration (the first iteration is at the top). 
The highest accuracy value is shown with a star.

features removed at 
each iteration 

Dr. George Bebis
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 Sequential forward selection. Here the reverse procedure is
followed.

 Compute C for each feature. Select the “best” one, say x1

 For all possible 2D combinations of x1, i.e., [x1, x2], [x1, x3],
[x1, x4] compute C and choose the best, say [x1, x3].

 For all possible 3D combinations of [x1, x3], e.g., [x1, x3, x2],
etc., compute C and choose the best one.

The above procedure is repeated till the “best” vector with

features has been formed. This is also a suboptimal
technique, requiring:

operations.
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Example
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Results of sequential forward feature selection for classification of a satellite 
image using 28 features. x-axis shows the classification accuracy (%) and y-axis 
shows the features added at each iteration (the first iteration is at the bottom). 
The highest accuracy value is shown with a star.

features added at 
each iteration 

Dr. George Bebis
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 Floating Search Methods

The above two procedures suffer from the nesting effect.
Once a bad choice has been done, there is no way to
reconsider it in the following steps.

In the floating search methods one is given the opportunity
in reconsidering a previously discarded feature or to discard
a feature that was previously chosen.

The method is still suboptimal, however it leads to
improved performance, at the expense of complexity.
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 Remarks:

 Besides suboptimal techniques, some optimal searching
techniques can also be used, provided that the optimizing cost
has certain properties, e.g., monotonicity. i.e.

C (x1 , ..., xi ) ≤ C (x1 , ..., xi , xi+1 )

 Instead of using a class separability measure (filter
techniques) or using directly the classifier (wrapper
techniques), one can modify the cost function of the classifier
appropriately, so that to perform feature selection and
classifier design in a single step (embedded) method.

 For the choice of the separability measure a multiplicity of
costs have been proposed, including information theoretic
costs.



 Filter Methods
 Evaluation is independent of the classification algorithm.

 The objective function evaluates feature subsets by their 
information content, typically interclass distance, statistical 
dependence or information-theoretic measures.

 Wrapper Methods
 Evaluation uses criteria related to the classification 

algorithm.

 The objective function is a pattern classifier, which evaluates 
feature subsets by their predictive accuracy (recognition rate 
on test data) by statistical resampling or cross-validation.
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Optimal Feature Generation

 In general, feature generation is a problem-dependent
task. However, there are a few general directions
common in a number of applications. We focus on three
such alternatives.

 Two class Case

 The goal is achieved by seeking the direction w in the m
dimensional space, along which the two classes are best 
separated in some way.

 Given an            the scalar             is the projection of x
along w. So

 where           are the mean values and             the 
variances of y in the two classes          , respectively, 
after the projection along w.
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 This is the celebrated generalized Rayleigh quotient, 
which, as it is known from linear algebra (Problem 
5.16), is maximized if w is chosen such that ...
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where λ is the largest eigenvalue of 

 Proof: From linear algebra we know that

occurs if w is chosen to be an eigenvector of the largest 

eigenvalue of S (Rayleigh quotient), i.e.

 For the case of our problem (generalized Rayleigh 
quotient), let

 Then the problem becomes equivalent with maximizing
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where the symmetry of Sw has been taken into account. The 

above is maximized if y is the eigenvector corresponding to 

the largest eigenvalue  λ , i.e.,

and finally, by replacing y by w, if w is chosen to satisfy

or equivalently solving the eigenvalue task

 The corresponding maximum value is

which justifies the choice of the maximum eigenvalue.
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By the definition of Sb we have that

where α is a scalar.

assuming, of course, that Sw is invertible.

Thus, we have reduced the number of features from m
to 1 in an optimal way.

All that remains is to find the threshold, i.e., the point 
along the one-dimensional subspace separating the 
projected points.

When the conditional densities p(x|ωi) are multivariate 
normal with equal covariance matrices Σ, we can 
calculate the threshold directly.
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FIGURE 5.6 (a) The optimal line resulting from Fisher’s criterion, 
for two Gaussian classes. Both classes share the same diagonal 
covariance matrix, with equal elements on the diagonal. The line is 
parallel to μ1-μ2. (b) The covariance matrix for both classes is 
nondiagonal. The optimal line is on the left. Observe that it is no 
more parallel to μ1-μ2. The line on the right is not optimal and the 
classes, after the projection, overlap.
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The optimal decision boundary is

and where w0 is a constant involving w and the prior probabilities.

● Thus, for the normal, equal-covariance case, the optimal decision 
rule is merely to decide ω1 if Fisher’s linear discriminant exceed 
some threshold, and to decide ω2 otherwise. (Choose w0 where the 
posteriors in the one-dimensional distributions are equal).

0 0t w w x  1
1 2,  w μ μ

● Fisher’s method performed feature generation and at the same 
time the design of a (linear) classifier; it combined the stages of 
feature generation and classifier design into a single one. The 
resulting classifier is

However, Fisher’s criterion does not provide a value for w0, which 
has to be determined. For example; if N(μ1 , Σ) & N(μ2 , Σ)
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Optimal Feature Generation

 Multiclass Case

Optimized features based on Scatter matrices (Fisher’s
linear discrimination).

• The goal: Given an original set of m measurements

, compute , by the linear transformation

so that the J3 scattering matrix criterion involving
Sw, Sb is maximized. AT is an matrix.

• The basic steps in the proof:

– J3 = trace{Sw
-1Sb}

– Syw = ATSxwA, Syb = ATSxbA,

– J3(A)=trace{(ATSxwA)-1 (ATSxbA)}

– Compute A so that J3(A) is maximum.
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The solution: (Sxw
-1Sxb)A=A(Syw

-1Syb)

 Let B be the matrix that diagonalizes simultaneously
matrices Syw, Syb , i.e:

BTSywB = I ,        BTSybB = D

which are the within- and between-class scatter matrices
of the transformed vector,

where B is a ℓ×ℓ matrix and D a ℓ×ℓ diagonal matrix.

3 ( )J
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A

      
1 1 1

2 2T T T T
xw xw xb xw xb xw

  

  S A A S A A S A A S A S A A S A 0

ˆ T T T T  y B y B A x C x

 Note that in going from y to ŷ there is no loss in the value 

of the cost J3. Why?
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 Summarize: If A maximizes J3(A) then

This is an eigenvalue-eigenvector problem with the 
diagonal matrix D having the eigenvalues of          on its 
diagonal and C having the corresponding eigenvectors as 
its Columns.
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 For an M-class problem, is of rank M-1.

 If ℓ=M-1, choose C to consist of the M-1 eigenvectors,
corresponding to the non-zero eigenvalues.

 The above guarantees max. J3 value. So, J3,x= J3,y =J3, ŷ.
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 It can be shown that for a two-class problem, this
results to the well known Fisher’s linear discriminant

For Gaussian classes, this is the optimal Bayesian
classifier, with a difference of a threshold value.

 If ℓ<M-1, choose the ℓ eigenvectors corresponding to
the ℓ largest eigenvectors.

 In this case, J3,ŷ < J3,x , that is there is loss of
information.

Geometric interpretation. The vector     is the 
projection of      onto the subspace spanned by the 

eigenvectors of            . The eigenvectors are not 
necessarily mutually orthogonal!
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FIGURE 3.6. Three 3-dimensional distributions are projected onto two-dimensional 
subspaces, described by a normal vectors W1 and W2. Informally, multiple 
discriminant methods seek the optimum such subspace, that is, the one with the 
greatest separation of the projected distributions for a given total within-scatter matrix, 
here as associated with W1.



NEURAL NETWORKS AND FEATURE
GENERATION/SELECTION

 Using neural networks for feature generation and 
selection.

 Possible solution is via the so-called auto-associative 
networks.

 A network is employed having m input and m output 
nodes and a single hidden layer with l nodes with linear 
activations.

 An extension of this idea is to use three hidden layers.

 Pruning a neural network is a form of feature selection 
integrated into the classifier design stage.
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Deep Autoencoders
(Ruslan Salakhutdinov)

 They always looked like a really 
nice way to do non-linear 
dimensionality reduction:

But it is very difficult to 
optimize deep autoencoders
using backpropagation.

 We now have a much better way 
to optimize them:

First train a stack of 4 RBM’s

Then “unroll” them.  

Then fine-tune with backprop.

1000  neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000  neurons

28x28

28x28

1

T
W

2

T
W

3

T
W

4

T
W

4
W

3
W

2
W

1W



68

 Hints from Generalization Theory.  اسلایدھا آخر تا حذف

Generalization theory aims at providing general bounds that
relate the error performance of a classifier with the number of
training points, N, on one hand, and some classifier dependent
parameters, on the other. Up to now, the classifier dependent
parameters that we considered were the number of its free
parameters and the dimensionality, , of the subspace, in which
the classifier operates. ( also affects the number of free
parameters).

 Definitions

• Let the classifier be a binary one, i.e.,

• Let F be the set of all functions f that can be realized by
the adopted classifier (e.g., changing the synapses of a
given neural network different functions are implemented).




 1,0: f
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 The shatter coefficient S(F,N) of the class F is defined as:

the maximum number of dichotomies of N points that can be
formed by the functions in F.

 The maximum possible number of dichotomies is 2N.
However, NOT ALL dichotomies can be realized by the set
of functions in F.

 The Vapnik – Chervonenkis (VC) dimension of a class F is
the largest integer k for which S(F,k) = 2k. If S(F,N)=2N,

we say that the VC dimension is infinite.

That is, VC is the integer for which the class of functions
F can achieve all possible dichotomies, 2k.

 It is easily seen that the VC dimension of the single
perceptron class, operating in the ℓ-dimensional space,
is ℓ+1.

,N
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 It can be shown that

Vc: the VC dimension of the class.

That is, the shatter coefficient is either 2N (the maximum
possible number of dichotomies) or it is upper bounded, as
suggested by the above inequality.

In words, for finite Vc and large enough N, the shatter
coefficient is bounded by a polynomial growth.

º Note that in order to have a polynomial growth of the shatter
coefficient, N must be larger than the Vc dimension.

 The Vc dimension can be considered as an intrinsic
capacity of the classifier, and, as we will soon see, only if
the number of training vectors exceeds this number
sufficiently, we can expect good generalization
performance.

1),(  cVNNFS
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• The dimension may or may not be related to the
dimension and the number of free parameters.

– Perceptron:

– Multilayer perceptron with hard limiting activation
function

where      is the total number of hidden layer nodes,    
the total number of nodes, and      the total number of 
weights    the input space dimension, e the base of the

natural logarithm, and [·] the floor operator that gives 
the largest integer less than its argument.

– Let      be  a training data sample  and assume that
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Let also a hyperplane such that

and

(i.e., the constraints we met in the SVM formulation). Then 

That is, by controlling the constant c, the     of the linear 
classifier can be less than   . In other words,    can be 
controlled independently of the dimension. 

Thus, by minimizing       in the SVM, one attempts to keep      
as small as possible. Moreover, one can achieve finite
dimension, even for infinite dimensional spaces. This is an 
explanation of the potential for good generalization 
performance of the SVM’s.
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 Generalization Performance

Let           be the error rate of classifier f, based on the 
N training points, also known as empirical error.

Let be the true error probability of f (also
known as generalization error), when f is confronted
with data outside the finite training set.

Let be the minimum error probability that can be
attained over ALL functions in the set F.

 fPN
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 )( fPe

 eP
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 Let be the function resulting by minimizing the
empirical (over the finite training set) error function.

 It can be shown that:





Taking into account that for finite dimension, the
growth of is only polynomial, the above
bounds tell us that for a large N :

 is close to , with high probability.

 is close to , with high probability.
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Where,             are constants.  In words, for                  
the performance of the classifier is guaranteed, with 
high probability, to be close to the optimal classifier in 
the class F.              is known as the sample complexity.

 Some more useful bounds

The minimum number of points,          , that guarantees, 
with high probability, a good generalization error 
performance is given by

 That is, for any
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• With a probability of at least          the following bound 
holds:

• where

Remark: Observe that all the bounds given so far are:

• Dimension free

• Distribution free
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 * Model Complexity vs Performance

This issue has already been touched in the form of overfitting in
neural networks modeling and in the form of bias-variance

dilemma. A different perspective of the issue is dealt below.

Structural Risk Minimization (SRM)

• Let be he Bayesian error probability for a given task.

• Let         be the true (generalization) error of an 
optimally design classifier   , from class     , given a finite
training set.

is the minimum error attainable in 

– If the class       is small, then the first term is expected
to be small and the second term is expected to be 
large. The opposite is true when the class    is large.

BP

)( *fPe
f F

   BeeeBe PPPfPPfP  )()( **

eP

F

F

F



78

• Let be a sequence of nested classes:

with increasing, yet finite dimensions.

Also, let

For each N and class of functions F(i), i=1, 2, …, compute
the optimum f*

N,i, with respect to the empirical error. Then
from all these classifiers choose the one than minimizes,
over all i, the upper bound in:

That is,
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 Then, as

The term

in the minimized bound is a complexity penalty term. If
the classifier model is simple the penalty term is small
but the empirical error term

 will be large. The opposite is true for complex models.

 The SRM criterion aims at achieving the best trade-off
between performance and complexity.
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* Bayesian Information Criterion (BIC)

Let the size of the training set, the vector of the
unknown parameters of the classifier, the
dimensionality of , and runs over all possible
models.

• The BIC criterion chooses the model by minimizing:

– is the log-likelihood computed at the ML 
estimate      , and it is the performance index.

– is the model complexity term.

• Akaike Information Criterion:
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