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Ch9: CONTEXT DEPENDENT CLASSIFICATION

❖ Remember: Bayes rule

❖ Here: The class to which a feature vector

belongs depends on:

➢ Its own value

➢ The values of the other features vectors

➢ An existing relation among the various classes

❖ This interrelation demands the classification to be
performed simultaneously for all available feature

vectors

❖ Thus, we will assume that the training vectors
occur in sequence, one after the 

other and we will refer to them as observations
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❖ The Context Dependent Bayesian Classifier

➢ Let

➢ Let

➢ Let      be a sequence of classes, that is

There are M N of those

➢ Thus, the Bayesian rule can equivalently be stated as

❖ Markov Chain Models (for class dependence)
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❖ NOW remember:

or

❖ Assume:

➢ statistically mutually independent 

➢ The pdf in one class independent of the others, then
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❖ From the above, the Bayes rule is readily seen 
to be equivalent to:

that is, it rests on

❖ To find the above maximum in brute-force task 
we need Ο(NM Ν ) operations!!

❖ Given a sequence of observations 
find the path of successive (class) transitions 
that maximizes above equation.
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➢ Each Ωi corresponds to one path through the trellis

diagram. One of them is the optimum (e.g., black).
The classes along the optimal path determine the

classes to which ωi are assigned.

➢ To each transition corresponds a cost.  For our case

•

•

•

1 1

ˆ( , ) ( ). ( )
k k k k kki i i i id P p x    

− −
=

1 0 1 11
ˆ( , ) ( ) ( )i i i id P p x   

)()(),(ˆˆ

1
1 i

N

k

iii PXpdD
kk

==
=

−


the overall cost to be optimized becomes



7

• Equivalently

where,

• Define the cost for reaching class ωik
at stage k via a 

path i as
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➢ Bellman’s principle now states

with

➢ The optimal path terminates at 

• Complexity O (NM2)
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Example

❖ Apply the Viterbi algorithm to compute the optimal paths up to 

stage k = 4, Assume that x4 =1.2 and that the observations reside 

in the one-dimensional space. Let the task involve three classes, 

namely, ω1 , ω2, ω3. We will further assume that the optimal 

paths up to stage k=3 have been computed and are shown in 

black lines in Figure. Let the optimal costs associated with each 

class at stage k = 3 be equal to D(ω1) = -0.5, D(ω2)= -0.6, 

D(ω3)= -0.2 .
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We will first compute the optimal path reaching class ω1 at stage k= 4.

Hence, the optimal path reaching class ω1 at stage k=4 is through ω3 at stage k =3.



11



12

❖Hidden Markov Models (PR-Ch3-p6)(ML-chap15)

➢ In some problems like the channel equalization, the states
are observable and can be “learned” during the training
period

➢ Now we shall assume that states are not observable and can
only be inferred from the training data

➢ Applications:

• Speech and Music Recognition

• OCR

• Blind Equalization

• Bioinformatics
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➢ An HMM is a stochastic finite state automaton, that
generates the observation sequence, x1, x2,…, xN

➢ We assume that: The observation sequence is
produced as a result of successive transitions
between states, upon arrival at a state:
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➢ This type of modeling is used for nonstationary
stochastic processes that undergo distinct transitions
among a set of different stationary processes.
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➢Examples of HMM:

• The single coin case: Assume a coin that is tossed behind
a curtain. All it is available to us is the outcome, i.e., H or
T. Assume the two states to be:

S = 1→H

S = 2→T

This is also an example of a random experiment with
observable (not hidden) states. The model is
characterized by a single parameter, e.g., P(H). Note that

P(1|1) = P(H),                   P(2|1) = P(T) = 1 – P(H)

P(i|j) denotes the transition 

probability from state sj to 

state si once the coin has 

been tossed and an 

observation has been made 

available to us.Single Coin 
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➢ The two-coins case: For this case, we observe a sequence of H

or T. However, we have no access to know which coin was

tossed. Identify one state for each coin. This is an example
where states are not observable. H or T can be emitted from

either state. The model depends on four parameters.

P1(H), P2(H), P(1|1), P(2|2)
Note: P(1|2) is the 

probability that the 

current observation 

(which can be either H

or T) is the outcome of 

an experiment 

performed using coin 1 

(state i=1) and that the 

previous observation 

was the result of tossing 

coin 2 (state j=2).
Two-Coins 
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➢ The three-coins case example is shown below:

➢ Note that in all previous examples, specifying the model
is equivalent to knowing:

➢ The probability of each observation (H,T) to be emitted from

each state.

➢ The transition probabilities among states: P(i|j).

Nine parameters 

are now required
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➢ A general HMM model is characterized by the
following set of parameters

1) Ks, number of states, s=1,2,…,M

4) P(i), i=1,2,…,KS, initial state probabilities, P(.)

3)    ( ),  1, 2,...,  sp x j j K=

2)    ( ),  , 1, 2,...,  sP i j i j K=

That is:

 ( | ), ( | ), ( ), SS P i j p x i P i K=



Low High

0.70.3

0.2 0.8

DryRain

0.6 0.6
0.4 0.4

Example of Hidden Markov Model



• Two states : ‘Low’ and ‘High’ atmospheric pressure.

• Two observations : ‘Rain’ and ‘Dry’.

• Transition probabilities: P(‘Low’|‘Low’)=0.3 , 

P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2, 

P(‘High’|‘High’)=0.8

• Observation probabilities : P(‘Rain’|‘Low’)=0.6 , 

P(‘Dry’|‘Low’)=0.4 , P(‘Rain’|‘High’)=0.4 , 

P(‘Dry’|‘High’)=0.6 .

• Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .

Example of Hidden Markov Model



• Suppose we want to calculate a probability of a sequence of  

observations in our example,  {‘Dry’,’Rain’}.

• Consider all possible hidden state sequences: 

P({‘Dry’,’Rain’} ) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + 

P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} , 

{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’}) 

❖where first term is : 

P({‘Dry’,’Rain’} , {‘Low’,’Low’})= 

P({‘Dry’,’Rain’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) = 

P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low)

= 0.4×0.6×0.4×0.3=0.0288

Calculation of observation sequence probability



22

➢ What is the problem in Pattern Recognition

➢Given M reference patterns, each described by an
HMM, find the parameters, S, for each of them

(training or learning)

➢Suppose we have an HMM as well as a set of
observations X. Determine the most likely sequence
of hidden states that led to those observations
(decoding)

➢Given an unknown pattern, find to which one of the
M, known patterns, matches best (recognition or

evaluation)
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➢Recognition: Any path method

➢Assume the M models to be known (M classes).

➢A sequence of observations, X, is given.

➢Assume observations to be emissions upon the
arrival on successive states

➢Decide in favor of the model S* (from the M

available) according to the Bayes rule

➢for equiprobable patterns

)(maxarg* XSPS
S

=

)(maxarg* SXpS
S

=
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➢For each model S there is more than one possible
sets of successive state transitions Ωi, each with
probability

Thus:

➢For the efficient computation of the above DEFINE

• forward variable α(ik)
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➢ α(ik) is the probability density of the joint event:

(a) a path is at state ik (ik ∈ {1, 2, . . . ,Ks}) at stage k and

(b) observations x1, x2, . . . , xk-1 have been emitted at   

the previous stages and

(c) observation xk is emitted from the state ik at stage k.
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▪ Some more quantities

• Backward variable β(ik): The probability density 

function of the event: observations xk+1 ,...,xN occur at 

stages k+1, ..., N, given that at stage k the path is at state ik.
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γ(ik): The probability density of the joint event: (a) a path is at 

state ik at stage k and (b) x1 ,...,xN have been observed is:
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➢Training
• The philosophy:

Given a training set X, known to belong to the specific 
model, estimate the unknown parameters of S, so that 

the output of the model, e.g.

to be maximized

➢This is a ML estimation problem with missing data

➢The number of computations is of the order of NKs
2

(compare with NKs
N).

1

( ) ( )
s

N

K

N

i

p X S i
=

=



29

✓ Assumption:  Data x discrete 

✓ Definitions:

)()(},...,2,1{ ixPixprx 

▪ ξk(i,  j, X | S) = the probability of the joint event: 

➢ (a) a path passes through state i at stage k and 

➢ (b) through state j at the next stage k+1 and 

➢ (c) the model generates the available sequence of 

observations X, given the parameters of the model S.

▪ γk(i | X, S) = the probability of the event: a path passes 

through state i at stage k given the model and the 

available observation sequence.

Baum–Welch Reestimation
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➢ The Algorithm:

➢Initial conditions for all the unknown parameters.

➢Step 1:  From the current estimates of the model 

parameters reestimate the new model      from

Compute (  )  P X S
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➢ Step 2:  Compute

go to step 1. Otherwise stop.

• Remarks:

• Each iteration improves the model 

• The algorithm converges to a maximum (local or global)

• The algorithm is an implementation of the EM algorithm
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• Normalization is required to avoid such recursive algorithms from 

accumulating large amounts of computational noise.

• We can apply a normalization factor at each step of the calculation:

• This is applied once per state per unit time, and simply involves 

scaling the current ’s by their sum at each epoch (e.g., a frame).

• Also, likelihoods tend to zero as time increases and can cause 

underflow. Therefore, it is more common to operate on log 

probabilities to maintain numerical precision . This converts products 

to sums but still involves essentially the same algorithm (though an 

approximation for the log of a sum is used to compute probabilities 

involving the summations). publications/courses/ece_8443/lectures/current/lecture_12.ppt
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Normalization is Important

where the scale factor, Q, is given by:
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http://www.ece.msstate.edu/research/isip/publications/courses/ece_8443/lectures/current/lecture_12.ppt


➢ HMM can model all possible 
words

➢ Each state corresponds to 
each letter of alphabet

➢ Letter transition 
probabilities are calculated 
for each pair of letters

➢ Letter confusion 
probabilities are symbol 
probabilities

➢ Separate HMMs are used to 
model each word
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● Each word, e.g., cat, dog, etc, 
has an associated HMM
● For a test utterance determine 
which model has highest probability 
● HMMs for speech are left-to-right 
models
● HMM produces a class conditional 
class-probability

HMM Word Recognition


